SkelTre - Fast Skeletonisation for Imperfect Point Cloud Data of Botanic Trees
نویسندگان
چکیده
Terrestrial laser scanners capture 3D geometry as a point cloud. This paper reports on a new algorithm aiming at the skeletonisation of a laser scanner point cloud, representing a botanical tree without leafs. The resulting skeleton can subsequently be applied to obtain tree parameters like length and diameter of branches for botanic applications. Scanner-produced point cloud data are not only subject to noise, but also to undersampling and varying point densities, making it challenging to extract a topologically correct skeleton. The skeletonisation algorithm proposed in this paper consists of three steps: (i) extraction of a graph from an octree organization, (ii) reduction of the graph to the skeleton and (iii) embedding of the skeleton into the point cloud. The results are validated on laser scanner point clouds representing botanic trees. On a reference tree, the mean and maximal distance of the point cloud points to the skeleton could be reduced from 1.8 to 1.5 cm for the mean and from 15.6 to 10.5 cm for the maximum, compared to results from a previously developed method.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملAutomated Detection of Branch Dimensions in Woody Skeletons of Fruit Tree Canopies
Modeling the 3D canopy structure of trees provides the structural mapping capability on which to assign distributed values of light-driven physiological processes in tree canopies. We evaluate the potential of automatically extracted skeletons from terrestrial lidar data as a basis for modeling canopy structure. The automatic and species independent evaluation method for lidar data of trees is ...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملThe Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots
This paper evaluated the feasibility of a terrestrial point cloud generated utilizing an uncalibrated hand-held consumer camera at a plot level and measuring the plot at an individual-tree level. Individual tree stems in the plot were detected and modeled from the image-based point cloud, and the diameter-at-breast-height (DBH) of each tree was estimated. The detected-results were compared with...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کامل